Cellular Automata Applied in Remote Sensing to Implement Contextual Pseudo-fuzzy Classification
نویسندگان
چکیده
Nowadays, remote sensing is used in many environmental applications, helping to solve and improve the social problems derived from them. Examples of remotely sensed applications include soil quality studies, water resources searching, environmental protection or meteorology simulations. The classification algorithms are one of the most important techniques used in remote sensing that help developers to interpret the information contained in the satellite images. At present, there are several classification processes, i.e., maximum likelihood, paralelepiped or minimum distance classifier. In this paper we investigate a new satellite image classification Algorithm based on Cellular Automata (ACA), a technique usually used by researchers on complex systems. There are not previous works related to satellite image classification with cellular automata. This new kind of satellite image classifier, that improves the results obtained by classical algorithms in several aspects, has been validated and experimented in the SOLERES framework.
منابع مشابه
Satellite Image Classification Based on Fuzzy with Cellular Automata
Satellite image classification is a significant technique used in remote sensing for the computerized study and pattern recognition of satellite information, which make possible the routine explanation of a huge quantity of information. Nowadays cellular automata are implemented for simulation of satellite images and also cellular automata relates to categorization in satellite image is used si...
متن کاملLand use changes analysis and prediction using remote sensing and QGIS MOLUSCE Plugin in the Siahkal County
Quantifying land use change dynamics is critical in tackling environmental and socio-economic challenges such as climate change in recent years. This study takes Siahkal County in Guilan Province as the research subject and analyzes the land use changes in two different years: 2000 and 2021, and predicts the change in 2031. We carried out land use change analysis using LANDSAT-7 ETM+ and LANDSA...
متن کاملSimulation of Future Land Use Map of the Catchment Area, with the Integration of Cellular Automata and Markov Chain Models Based on Selection of the Best Classification Algorithm: A Case Study of Fakhrabad Basin of Mehriz, Yazd
INTRODUCTION Since the land use change affects many natural processes including soil erosion and sediment yield, floods and soil degradation and the chemical and physical properties of soil, so, different aspects of land use changes in the past and future should be considered particularly in the planning and decision-making. One of the most important applications of remote sensing is land ...
متن کاملDetection and prediction of land use/ land cover changes using Markov chain model and Cellular Automata (CA-Markov), (Case study: Darab plain)
unprincipled changes in land use are major challenges for many countries and different regions of the world, which in turn have devastating effects on natural resources, Therefore, the study of land-use changes has a fundamental and important role for environmental studies. The purpose of this study is to detect and predicting of land use/ land cover (LULC) changes in Darab plain through the Ma...
متن کاملEdge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System
Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...
متن کامل